Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
iScience ; 25(5): 104311, 2022 May 20.
Article in English | MEDLINE | ID: covidwho-1804381

ABSTRACT

Novel strategies are needed to identify drug targets and treatments for the COVID-19 pandemic. The altered gene expression of virus-infected host cells provides an opportunity to specifically inhibit viral propagation via targeting the synthetic lethal and synthetic dosage lethal (SL/SDL) partners of such altered host genes. Pursuing this disparate antiviral strategy, here we comprehensively analyzed multiple in vitro and in vivo bulk and single-cell RNA-sequencing datasets of SARS-CoV-2 infection to predict clinically relevant candidate antiviral targets that are SL/SDL with altered host genes. The predicted SL/SDL-based targets are highly enriched for infected cell inhibiting genes reported in four SARS-CoV-2 CRISPR-Cas9 genome-wide genetic screens. We further selected a focused subset of 26 genes that we experimentally tested in a targeted siRNA screen using human Caco-2 cells. Notably, as predicted, knocking down these targets reduced viral replication and cell viability only under the infected condition without harming noninfected healthy cells.

2.
Mol Syst Biol ; 17(11): e10260, 2021 11.
Article in English | MEDLINE | ID: covidwho-1488874

ABSTRACT

Tremendous progress has been made to control the COVID-19 pandemic caused by the SARS-CoV-2 virus. However, effective therapeutic options are still rare. Drug repurposing and combination represent practical strategies to address this urgent unmet medical need. Viruses, including coronaviruses, are known to hijack host metabolism to facilitate viral proliferation, making targeting host metabolism a promising antiviral approach. Here, we describe an integrated analysis of 12 published in vitro and human patient gene expression datasets on SARS-CoV-2 infection using genome-scale metabolic modeling (GEM), revealing complicated host metabolism reprogramming during SARS-CoV-2 infection. We next applied the GEM-based metabolic transformation algorithm to predict anti-SARS-CoV-2 targets that counteract the virus-induced metabolic changes. We successfully validated these targets using published drug and genetic screen data and by performing an siRNA assay in Caco-2 cells. Further generating and analyzing RNA-sequencing data of remdesivir-treated Vero E6 cell samples, we predicted metabolic targets acting in combination with remdesivir, an approved anti-SARS-CoV-2 drug. Our study provides clinical data-supported candidate anti-SARS-CoV-2 targets for future evaluation, demonstrating host metabolism targeting as a promising antiviral strategy.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/metabolism , Metabolic Networks and Pathways/genetics , Pandemics , SARS-CoV-2/physiology , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , COVID-19/virology , Caco-2 Cells , Chlorocebus aethiops , Datasets as Topic , Drug Development , Drug Repositioning , Host-Pathogen Interactions , Humans , RNA, Small Interfering , Sequence Analysis, RNA , Vero Cells , COVID-19 Drug Treatment
3.
Elife ; 102021 07 27.
Article in English | MEDLINE | ID: covidwho-1328261

ABSTRACT

Background: Until coronavirus disease 2019 (COVID-19) drugs specifically developed to treat COVID-19 become more widely accessible, it is crucial to identify whether existing medications have a protective effect against severe disease. Toward this objective, we conducted a large population study in Clalit Health Services (CHS), the largest healthcare provider in Israel, insuring over 4.7 million members. Methods: Two case-control matched cohorts were assembled to assess which medications, acquired in the last month, decreased the risk of COVID-19 hospitalization. Case patients were adults aged 18 to 95 hospitalized for COVID-19. In the first cohort, five control patients, from the general population, were matched to each case (n=6202); in the second cohort, two non-hospitalized SARS-CoV-2 positive control patients were matched to each case (n=6919). The outcome measures for a medication were: odds ratio (OR) for hospitalization, 95% confidence interval (CI), and the p-value, using Fisher's exact test. False discovery rate was used to adjust for multiple testing. Results: Medications associated with most significantly reduced odds for COVID-19 hospitalization include: ubiquinone (OR=0.185, 95% CI [0.058 to 0.458], p<0.001), ezetimibe (OR=0.488, 95% CI [0.377 to 0.622], p<0.001), rosuvastatin (OR=0.673, 95% CI [0.596 to 0.758], p<0.001), flecainide (OR=0.301, 95% CI [0.118 to 0.641], p<0.001), and vitamin D (OR=0.869, 95% CI [0.792 to 0.954], p<0.003). Remarkably, acquisition of artificial tears, eye care wipes, and several ophthalmological products were also associated with decreased risk for hospitalization. Conclusions: Ubiquinone, ezetimibe, and rosuvastatin, all related to the cholesterol synthesis pathway were associated with reduced hospitalization risk. These findings point to a promising protective effect which should be further investigated in controlled, prospective studies. Funding: This research was supported in part by the Intramural Research Program of the National Institutes of Health, NCI.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19 Drug Treatment , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Case-Control Studies , Cohort Studies , Ezetimibe/administration & dosage , Female , Hospitalization , Humans , Male , Middle Aged , Odds Ratio , Rosuvastatin Calcium/administration & dosage , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Severity of Illness Index , Ubiquinone/administration & dosage , Vitamin D/administration & dosage , Young Adult
4.
Mol Syst Biol ; 16(7): e9628, 2020 07.
Article in English | MEDLINE | ID: covidwho-707164

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has is a global health challenge. Angiotensin-converting enzyme 2 (ACE2) is the host receptor for SARS-CoV-2 entry. Recent studies have suggested that patients with hypertension and diabetes treated with ACE inhibitors (ACEIs) or angiotensin receptor blockers have a higher risk of COVID-19 infection as these drugs could upregulate ACE2, motivating the study of ACE2 modulation by drugs in current clinical use. Here, we mined published datasets to determine the effects of hundreds of clinically approved drugs on ACE2 expression. We find that ACEIs are enriched for ACE2-upregulating drugs, while antineoplastic agents are enriched for ACE2-downregulating drugs. Vorinostat and isotretinoin are the top ACE2 up/downregulators, respectively, in cell lines. Dexamethasone, a corticosteroid used in treating severe acute respiratory syndrome and COVID-19, significantly upregulates ACE2 both in vitro and in vivo. Further top ACE2 regulators in vivo or in primary cells include erlotinib and bleomycin in the lung and vancomycin, cisplatin, and probenecid in the kidney. Our study provides leads for future work studying ACE2 expression modulators.


Subject(s)
Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , A549 Cells , Angiotensin-Converting Enzyme 2 , Betacoronavirus , Bleomycin/pharmacology , COVID-19 , Dexamethasone/pharmacology , Drug Design , Drug Evaluation, Preclinical , Erlotinib Hydrochloride/pharmacology , Fluphenazine/pharmacology , HEK293 Cells , Humans , Kidney/drug effects , Lung/drug effects , MCF-7 Cells , Pandemics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Systems Biology , Up-Regulation , Vemurafenib/pharmacology , COVID-19 Drug Treatment
5.
Non-conventional in Times Cited: 0 Szhaffer Alejandro/0000-0002-2147-8033 | WHO COVID | ID: covidwho-734242

ABSTRACT

TheCOVID-19 pandemic caused bySARS-CoV-2 has is a global health challenge. Angiotensin-converting enzyme 2 (ACE2) is the host receptor forSARS-CoV-2 entry. Recent studies have suggested that patients with hypertension and diabetes treated withACEinhibitors (ACEIs) or angiotensin receptor blockers have a higher risk ofCOVID-19 infection as these drugs could upregulateACE2, motivating the study ofACE2modulation by drugs in current clinical use. Here, we mined published datasets to determine the effects of hundreds of clinically approved drugs onACE2expression. We find thatACEIs are enriched forACE2-upregulating drugs, while antineoplastic agents are enriched forACE2-downregulating drugs. Vorinostat and isotretinoin are the topACE2up/downregulators, respectively, in cell lines. Dexamethasone, a corticosteroid used in treating severe acute respiratory syndrome andCOVID-19, significantly upregulatesACE2bothin vitroandin vivo. Further topACE2regulatorsin vivoor in primary cells include erlotinib and bleomycin in the lung and vancomycin, cisplatin, and probenecid in the kidney. Our study provides leads for future work studyingACE2expression modulators.

SELECTION OF CITATIONS
SEARCH DETAIL